
Requirements engineering blinders: exploring

information systems developers’ black-boxing

of the emergent character of requirements

Jonny Holmström1 and
Steven Sawyer2

1Department of Informatics, Umeå University,

Umeå, Sweden; 2School of Information Studies,

Syracuse University, Syracuse, U.S.A.

Correspondence: Jonny Holmström,
Department of Informatics, Umeå University,
Umeå 90187, Sweden.
Tel: þ46 70 5193855;
E-mail: jonny.holmstrom@informatik.umu.se

Received: 6 November 2008
Revised: 15 October 2009
2nd Revision: 26 April 2010
3rd Revision: 26 August 2010
4th Revision: 27 September 2010
Accepted: 28 September 2010

Abstract
In this paper we focus empirical and conceptual attention on the social

construction of information systems (IS) requirements, and illustrate that IS

developers too often choose to ignore, and thus effectively black-box, the
complexities of gathering requirements in order to simplify both the difficulties

of their work and their relations with customers. The empirical contribution of

this paper is evidence drawn from a study of how IS developers pursue

requirements engineering and how they conceive its value. The factors we
found to be important in this process include: the changing needs of the

organization, the ways in which structured IS methods are enacted via

experience and social competency, the formation of project groups, and finally
engagement in interpersonal conflict and negotiations. Our conceptual

contribution is theorization on the nature of developing requirements as a

process of social learning.
European Journal of Information Systems (2011) 20, 34–47. doi:10.1057/ejis.2010.51;
published online 2 November 2010

Keywords: requirements engineering; information systems development; qualitative
research; social construction of technology; social learning

Requirements engineering and information systems
development
Contemporary literature shows that certain problems related to developing
Information Systems (IS) are no less acute now than in the 1980s. For
instance, Avison & Fitzgerald (2003) find that IS development projects
continue to fail despite increasing attention to method innovation. Thus,
the aim of the research presented here is to better understand how
requirements engineering (RE) is enacted. More specifically, we seek
empirical and conceptual insight into the ways in which IS developers
ignore or ‘black box’ the emergent character of requirements (thereby
addressing why it is that practitioners are continuing to pursue paths that
the research literature clearly indicates are inherently problematic).

The attempts to understand and guide the efforts needed to gather and
manage requirements has coalesced into both an academic and profes-
sional field called RE. The RE remit includes discovering, prioritizing,
documenting, representing and maintaining a set of requirements for
building a computer-based IS (Thayer & Dorfman, 1990; Loucopoulos &
Karakostas, 1995; Zave, 1995; Nusibeh & Easterbrook, 2000). Moreover, RE
is concerned with analyzing and documenting requirements, by processes
including needs analysis, requirements analysis and requirements specifi-
cation (Sommerville & Sawyer, 1997; Hanisch & Corbitt, 2007).

European Journal of Information Systems (2011) 20, 34–47
& 2011 Operational Research Society Ltd. All rights reserved 0960-085X/11

www.palgrave-journals.com/ejis/

In this paper we argue that RE’s socially constructed
nature and the inherent conflicts among multiple users’
needs are either incompletely addressed or – worse –
intentionally ‘black-boxed’ by professional IS developers.
We note that this black-boxing reduces the potential
value of RE, turning it into a rather benign process of
documenting rather than the intended pursuit of value.
Building on evidence drawn from a field study of
requirements gathering practice, we consider theoretical
aspects of requirements as a social learning activity, based
in constructivist, rather than reductionist, approaches.

Our interest is rooted in Brooks (1987) poignant
reminder that there is no silver bullet in developing
software. While this is seemingly well known, there
continues to be ongoing quests by members of the IS
development community to discover such ideal methods,
and RE is one of the approaches for which there are great
(possibly excessive) expectations.

To make our case, the paper is developed in five more
sections. In the next section we develop our conceptual
position, and present related research on IS development,
RE and requirements management. In the subsequent
section we present the social construction of technology
(SCOT) approach as our theoretical lens, and in the
fourth section we present the details of our research
approach and our results.

RE and IS development
In this section we first review the RE and IS literature,
since together these streams provide the grounding for
our investigation of RE practices. We then introduce the
two components of RE examined in this study: (1) RE in
the context of heterogeneous environments and (2) RE as
a series of negotiations. So, we also review here the
theoretical and empirical work related to these two
components.

RE and requirements management
There is longstanding interest among RE scholars in the
social aspects of requirements (e.g., Malcolm, 2001). For
example, Wastells (1996) argued that methods are used
both because IS development practices are inherently
complex and to satisfy developers’ needs to appear
professional (see also Avgerou & Cornford, 1993). The
problems associated with the design and uses of IS,
particularly the difficulties that arise when client organi-
zations’ requirements are regarded as fixed lists of
specifications, rather than emergent sets of needs with
social dimensions, have also long been known (e.g., Paul,
1993).

While these concerns have been raised by some in the
scholarly community, they appear to have had less
impact on RE in practice. In particular, evidence suggests
that developers tend to ‘black box’ or avoid addressing
issues associated with the emergent character of require-
ments. Fifteen years ago Loucopoulos & Karakostas
(1995, pp. 19–20) noted that most contemporary soft-
ware development methods ‘focus on the deliverables of

the process rather than on the process itself’. More recent
empirical reports suggest that the negotiation process
among developers and stakeholders remains a crucial
and under-studied activity in developing requirements
(e.g., Rooksby et al., 2006; Chabraborty et al., 2010). This
is particularly interesting since current theories of RE
do not take sufficient account of local context issues, and
too often ignore the difficulties that socially marginalized
people face in working in contemporary organizations
(e.g., Ackerman, 2000; Nusibeh & Esterbrook, 2000). The
functional rationalism that underpins the one-solution-
fits-all paradigm has come under significant pressure
from systems and engineering theorists who argue that
RE is a complex and heterogeneous process (Bergman
et al., 2001).

Within the functional-rationalist framework, at least
three assumptions are not made explicit (or, worse,
disappear into the background). First, requirement
collection is based on the assumption that an organiza-
tion remains unchanged sufficiently long for a complete
list of required specifications to be gathered and a
system developed. A second assumption is that users are
expected to both understand and be able to communicate
their present and future needs in clear and ordered ways
(Truex et al., 1999). A third assumption is that the main
actors within an organization have congruent ideas about
the organization’s aims and objectives (Bergman et al.,
2002a).

There is clear evidence that these assumptions have
tenuous validity. For example, Truex et al. (1999) describe
how IS developed within the framework of these
assumptions are likely to fail to meet the commissioning
organizations’ needs. Contemporary organizations must
be flexible and adjust rapidly to dynamic situations,
hence their IS must be similarly flexible. The contem-
porary organization’s reality is not static (and may never
have been) so it is at best unhelpful to model the
specification process on a static environment. It must
be possible to transform IS that are developed for modern
organizations continually and quickly. Thus, system
requirements should be analyzed and reassessed con-
stantly (Truex et al., 1999).

One reason for the steady rate of failure in IS
development projects may be historical: most of the
traditional development methods approach requirements
management in an incomplete manner (e.g., Truex et al.,
1999; Bergman et al., 2001). The traditional premise –
what Stewart & Williams (2005) call the ‘design fallacy’ –
is that requirements are conceptual things that ‘exist’ in
an organization, which the skilled IS developer can
identify and meet. Truex, Stewart, Bergman and their
respective colleagues all argue that requirements cannot
be readily identified in an organization. Instead, require-
ments are incompletely sketched in the minds of various
important organizational stakeholders. Such a view shifts
the emphasis from a ‘gathering’ or ‘harvesting’ metaphor
towards negotiating or learning. In this second view,
the premise is that stakeholders possess understanding of

Requirements engineering blinders Jonny Holmström and Steven Sawyer 35

European Journal of Information Systems

the problems and needs for a future IS that is partially
developed, possibly conflicting, and probably dispersed
in various forms among many stakeholders.

The purposes of gathering requirements are to under-
stand and depict the customer’s needs and thus establish
the IS’s required properties. Requirements are often
formulated according to particular specifications, which
may include detailed specifications regarding the IS’s
functions, appearance, and performance. These specifica-
tions serve as the guide for subsequent development
activities. In this model, requirements become the
foundation upon which the project is based, hence the
gathering and management of requirements are impor-
tant, if not central, aspects of IS development. A central
premise in software engineering, IS development, and
the design of software-intensive systems is that when
requirements are collected in a way that faithfully
represents the needs of the stakeholders, the likelihood
of success is improved. Conversely, poorly developed
requirements – ones that do not match user or stake-
holder needs – are likely to derail the project and make
the resulting IS significantly less valuable.

Moreover, the traditional view of IS development as
a technical or engineering activity is increasingly seen as
incomplete (e.g., Sawyer, 2001a; Madsen et al., 2006;
Howcroft & Light, 2010). Truex et al. (1999) regard
requirements management as being, to a large extent,
a process of compromise to address prioritized changes
that occur within an organization and the resources at
one’s disposal. In order to develop a system that is
suitable for modern organizations, one should welcome
a healthy degree of conflict between the users regarding
their system. If these conflicts can be brought to the
surface, then changes to improve the system can be more
rationally discussed and identified (Truex et al., 1999).
The role of conflict management within system develop-
ment has been examined to a certain extent, for example
within the Scandinavian school of IS development
(Ehn, 1988, 1993). However, it has been rarely applied
in practical system development, and Bergman et al.
(2002a) argue that there is a need to further refine (and
implement) its use in this context.

Requirements in and from a heterogeneous
environment
Moving away from static and consensus-driven views
of an organization’s goals and needs – moving beyond
the ‘design fallacy’ – makes requirements gathering an
even more complex activity. In noting this, the issue is
not one of moving from a well-defined space to a less-well
defined space. Rather, the issue is to make clear that
requirement gathering is done in a complex social milieu
in which current models of this effort do not adequately
represent the situation.

According to the dynamic model of organizing,
identifying, understanding and representing an organiza-
tion’s problems, its needs should be seen as evolutionary,
ongoing and constantly changing (e.g., Truex et al., 1999;

Hansen et al., 2009; Holmström et al., 2010). Hence,
developers of an IS should be concerned not only with
the system itself, but also with the larger socio-economic
context in which the IS will be used (Bergman et al.,
2002b). That is, requirements gatherers should be social
actors, aware of the situated and institutionally framed
actions in which they and their colleagues participate
(e.g., Lamb & Kling, 2003; Madsen et al., 2006; Rowlands,
2008).

The premise of the socially constructed view of
requirements begins with the observation that in any
reasonably sized IS development project – any that
involves more than a few users from more than one
department – important actors will have different
opinions about which requirements are most salient. It
will also be unusual for all the members of an organiza-
tion to actively participate in the definition of system
requirements. Instead, a smaller number of members will
be asked to, or assigned to, represent the organization’s
interests and influence the project. These delegates,
whom we call the participating actors, will be those who,
acting with the requirements engineers and other IS staff,
formulate the requirements. The assumption is that
participating actors are either agents in service of the
important actors, or are themselves the important actors.

The relationship between importance and participation
is fundamental to characterization of RE as social
learning. It is through participation that requirements
are developed and systems are constructed. The partici-
pating actors thus play defining roles in the requirements
management process – whether or not they are the
most knowledgeable or the most suitable representatives
of the organization and its needs (Bergman et al., 2002b).

In larger IS projects that involve multiple departments,
the participating actors are likely (if not certain) to have
different opinions on how goals should be met and the
direction in which the organization should proceed.
Those who make the decisions during the course of
the project clearly play a defining role when everyone is
not in agreement. In an ideal situation, the optimal
approach would be to collect all the relevant information
about the situation and then let the main actors come
together in order to make decisions. In practice it is
difficult to gather the disparate, relevant, information
related to the development of an IS, much less organize it
in ways that readily allow decision-makers to make
informed responses (e.g., Hansen et al., 2009).

The conflicts that arise among participating actors are
partly due to disagreements about which requirements
should be prioritized and (hence) who should make
decisions. Organizations rarely have the full complement
of resources needed to take into account the needs of all
the involved actors. This leads to situations where
selections are continually being made in order to decide
whose needs will be met. The omnipresent risk of being
unable to complete an IS within the allotted time and
budget often drives organizational decision-makers to
decide if more resources will be allotted or requirements

Requirements engineering blinders Jonny Holmström and Steven Sawyer36

European Journal of Information Systems

will be neglected. Negotiations are often necessary to (re-)
determine whose interests will be fulfilled. Moreover,
this can develop into a cycle of continuous evaluation
and re-evaluation of resources and needs, leaving any
decisions open to future discussion and renegotiation
(Bergman et al., 2002a).

Negotiations and conflict resolution
Gathering, representing and prioritizing requirements
involves engaging in negotiations. Consequently, addres-
sing conflicts among participating actors is a common
(if not inevitable), part of RE activity. The reality of this
conflict is commonly noted (e.g., Hansen et al., 2009),
and some empirical information related to this issue has
been published in both the software engineering and IS
development literature (Boehm, 1981; Guinan, 1988;
Robey, 1994; Robinson & Volkov, 1998; Urquhart, 1999;
Sawyer, 2001b). Bergman et al. (2002a) note that this
literature highlights the importance of recognizing and
addressing conflicts, but also reminds us that bringing
forth and resolving conflict is not the only important
factor; it is also important to examine the underlying
structures to understand the source of these conflicts.
Given this, many of today’s IS development methods
seem to focus too little on reducing conflicts or increas-
ing the participating actors’ understanding of one
another’s perceptions of IS plans.

In IS development projects a central goal is for
participating actors to have an understanding of the
system’s requirements. The process of requirement speci-
fications can help meet this goal, and the resulting
requirements can act as a type of contract between IS
developers and the organization commissioning the
system. These requirements (and resulting specifications)
are of great importance in that the developers can gain a
common understanding of the main features and capabi-
lities that the system is supposed to incorporate.

Too often, however, this understanding is lacking –
even if a set of specifications has been formally arti-
culated. This leads to a situation where the espoused
requirements may have been met, but the system does
not achieve its intended goals. A second issue associated
with incomplete (or poorly developed) requirements is
that participating actors may interpret the specifications
in different ways; individual actors may interpret them
as favorably as possible for themselves and ignore
all conflicting interpretations (Bergman et al., 2002a;
Zappavigna & Patrick, 2010). An effective negotiation
process may arise through the main actors confronting
each other and discussing their individual points of view
in order to come to a mutual understanding about the
requirements that are most necessary. If possible, these
actors may then successfully compromise as long as
one interest is not met by excessively damaging interests
that are important to other actors. Certain conflicts and
divisions are unlikely to be resolved, however, without
the intervention of someone who has sufficient power to

decide how resources will be allocated by the commis-
sioning organization.

Taken together this line of reasoning suggests that
understanding organizations as complex, dynamic and
conflict-ridden must be accompanied with an apprecia-
tion that requirements are emergent, rather than static.
Building on this, Howcroft & Light (2010) advance a
convincing argument that this must be seen as a social
construction. With all this, there seems to be a disjunc-
ture between leading research on RE and much RE
practice. The former is built on the assumptions that
contemporary organizations are characterized by conflict
rather than harmony, and that requirements are emer-
gent rather than static and objective (Ghezzi & Nuseibeh,
1998; Rooksby et al., 2006). In the latter, in contrast,
the understanding of organizational action is largely in
line with the view that organizational life is harmonious,
and requirements are seen as being objective rather than
emergent.

Social construction of technology
We build here on the SCOT approach as outlined
originally by Pinch & Bijker (1984). According to Bijker
and colleagues (Bijker et al., 1987; Bijker & Law, 1992;
Bijker, 1995), technological artifacts are open to socio-
logical analysis that considers not only their design
and use, but also their technical content. The SCOT
approach upholds the principle of symmetry between
social and technological elements, avoiding any refer-
ence to material characteristics of a technology in its
analyses. Technological change is explained by refer-
ence to social practices, particularly processes of inter-
pretation, negotiation, and closure by different actors
and social groups. Technology is understood as a social
construction that can only be explained by focusing on
the social processes that have constructed it. Given the
socially constructed nature of IS’s requirements, SCOT
provides an analytical framework for pursuing a deeper
understanding of their construction (e.g., Howcroft &
Light, 2010).

The RE effort reflects features common to constructivist
studies of technology. Most importantly, social construc-
tivism includes a conception of technological develop-
ment as a contingent process. Accordingly, technological
change cannot be analyzed as following a fixed, unidir-
ectional path, and cannot be explained by reference to
some inner technological logic. Rather, technological
change is seen as being best explained by reference to a
number of technological controversies, disagreements,
and difficulties that involve different actors. These actors
or groups engage in strategies to win concessions from
their opponents and shape technology according to
their own aims. Hence, the social constructivist approach
places society (and social action) as the driver of techno-
logical change and regards artifacts as being developed
according to social interests. This leads to the concept of
‘interpretive flexibility’, that is, that the value, purpose,

Requirements engineering blinders Jonny Holmström and Steven Sawyer 37

European Journal of Information Systems

and meaning of an object, like technology, is contingent
on interpretation.

Interpretation is, in turn, developed within one, or
several, interpretive frameworks as various groups of
actors come to grips with (interpret) the object under
consideration. Thus, the properties of objects are not
inherent in the objects themselves, but are products
of social construction. For example, Woolgar’s (1991)
constructivist view holds that the capacity of technolo-
gies remains essentially indeterminate both before their
sale (during their conception, design, and development)
and later, while they are in use.

Borrowing from Bijker et al. (1987), Orlikowski & Gash
(1994) developed ideas about the vital roles technological
frames play in this process. Bijker et al. (1987) refer to
technological frames as the ways in which relevant social
groups attribute meanings to an artifact. A technological
frame is the repository of knowledge, cultural values,
goals, practices and exemplary artifacts shared by a social
group, which structures their understanding of objects
and processes in technical innovation, and their subse-
quent actions. In analyzing a particular process of tech-
nological innovation, the analyst can choose to include
not only the technological frame(s) of social groups that
have been influential in determining the outcome of the
process, but also those, and changes therein, of groups
whose voices have not been heard.

In this socially constructed view, requirements are not
things that exist, or have been clearly articulated, ready
to gather, in an organization. Rather, requirements are
generated through negotiation and conflict resolution
among the different actors involved in the project. Such a
view suggests that seeing requirements gathering as a
negotiation will increase the chances that requirements
will be developed that meet the commissioning organiza-
tion’s needs and (hence) that the IS development project
will lead to a useful system. This, in turn, requires the IS
developer to be skilled in engaging in and managing such
negotiation processes; a conclusion that the academic
literature in IS and software engineering has been
consistently articulating since the 1980s (Guinan, 1988;
Urquhart, 1999; Mathiassen & Nielsen, 2000; Bergman
et al., 2002a).

The socially constructed view of requirements builds
on the literature of science and technology studies (STS),
which regard a technology as the result of social actions,
something that arises from debate, discourse and discus-
sion. Social-constructionist research on technology began
with studies by the Tavistock Institute in the 1950s
(e.g., Berger & Luckmann, 1966; Mumford, 2003). This
approach has been advanced as a means to understand
the development of software (Howcroft & Light, 2010).
Strangely, this robust literature has been rarely cited in
the RE literature, despite the strong advocacy for just
such a representation by RE scholars (e.g., Rooksby et al.,
2006). There is, however, a stream of literature in method
enactment in IS development (e.g., Madsen et al., 2006;
Rowlands, 2008). Our work can be seen as contributing

more evidence to support the arguments made in the
method enactment literature that IS approaches are social
constructions. Since our work focuses on RE, and not IS
development more generally, we also aim to contribute
more specific conceptual insights.

The social-constructionist approach to understanding
the development of technologies focuses on the social
actions relative to technology decisions and is grounded
in detailed empirical studies of the work of scientists and
engineers. The scholarly traditions of STS build from the
conceptual premise of historians and sociologists that
technologies represent an outcome of a political process
framed by the interests, resources, negotiations and
discussions among central actors. These arrangements
result in the social construction of the means and forms
of a technological artifact (e.g., Grint & Woolgar, 1997).
Such a framing is ideally suited for better understanding
the socially constructed nature of an IS’s requirements as
it focuses attention on: (1) the importance of negotiation
among stakeholders (users and other organizational
stakeholders like decision-makers) and developers; and
(2) differences in social power (between the relevant
social groups).

Research effort
In this section we build on our field research and
secondary sources to explore the ways in which IS
developers engage in RE and how they conceive its value.
We develop this as an exploratory study, focusing on
developing an understanding of how RE is enacted,
which we then apply to reflect and theorize (Weick,
1995) about the nature of RE and associated processes.
In this way we extend current conceptualization of RE,
a process that Vaughan (1992) calls theory elaboration.
In addition to better explicating the basis, premise and
elements of RE, we also infer implications for professional
practices in RE and IS development.

Research approach
This study builds from an interpretive epistemology
(Walsham, 1993; Klein & Myers, 1999). Interpretive
research ‘attempt(s) to understand phenomena through
assessing the meanings that people assign to them’
(Orlikowski & Baroudi, 1991, p. 5). This ambition is
central to our study, which relies on qualitative inter-
views with developers and applies qualitative analysis
to interpret the RE practices. Interpretive researchers
often use an underlying theory for both framing and
analyzing research data (Walsham, 1993; Holmström,
2005), and in this case we draw upon SCOT to guide
the data collection, analysis, and reporting. In an
interpretive case study, the researchers become integral
to the research method and are obliged to acknowledge
their influence over it (Golden-Biddle & Locke, 1993;
Mason, 1996; Klein & Myers, 1999). In our case, the first
author conducted the empirical study, and the second
author collaborated in interpreting the findings and
writing the manuscript. Since it was anticipated that

Requirements engineering blinders Jonny Holmström and Steven Sawyer38

European Journal of Information Systems

developers’ experiences might differ, depending upon the
numbers and types of projects they had engaged in,
participants were deliberately selected to ensure variation
with respect to age and experience.

The aim of this research is to better understand how RE
practices – the gathering and representation of stake-
holder’s needs for an IS – are enacted. To meet this aim
we interviewed working professionals for whom require-
ments gathering is a major part of their work. For
pragmatic purposes, snow-ball sampling was used to
select interviewees from the local business community.
Given the focus on requirements gathering, we judged
that the exploratory work would not be compromised by
the sampling approach.

Data collection and analysis
In this section we focus first on the selection and
collection of data, then on analysis of the data.

Data selection and collection We conducted 26 inter-
views with IS developers from five IS developing
companies: Martinsson, Sogeti, Tieto Enator, Umeå
datakonsulter, and WM-Data, all of which are relatively
small IT consultancy firms (though many are parts of
larger organizations) located in Umeå, Sweden. All of the
interviewed consultants had between two and 16 years of
professional experience of RE and IS development.

In the 26 interviews the data were gathered, analyzed,
and discussed with the participants within an interpre-
tivist paradigm. This interpretivist approach, with its goal
of revealing the participant’s views of reality, allowed the
underlying reasons for actions in RE practice to be
elicited. As noted above, our 26 interviewers, and their
five companies, were not randomly selected, nor can we
argue that they reflect a representative sample across all
important characteristics. For these (and perhaps other
more idiosyncratic) reasons, allegations of bias are
commonly raised about interpretive research. Bias can
refer to the way in which a particular point of view may
affect the way one observes and interprets a specific
situation, or it may refer to a systematic error in the
research process. In particular, opportunities for the
researcher to influence findings occur in any case study
research where relationships among researchers and
participants can be frequent and close. In addition,
participants may not report fully to the researcher if they
perceive that the information given may display them in
a negative light.

Aware of these concerns, we agreed with the companies
involved in the study at the outset that the consultants
would be referred to by pseudonyms, and thus not
attached to a specific activity and/or argument. Further,
all participants were volunteers who were aware that we
had made arrangements to support their confidentiality.
These steps provided assurance to the interviewees
that they could be open and frank about their actual
work practices. Thus, we refer to the consultants and
their organizations by pseudonyms. The consultants are

referred to as A-Z in order to maintain their anonymity
while also making it possible to trace their voices in the
results section.

The interviews, which were audio recorded and trans-
cribed, were between 50 and 85 min long and conducted
by the first author. With respect to use of existing
theoretical constructs to guide theory-building research,
we worked within the explicit conceptual framework
provided by SCOT. Such a framework becomes a
‘researcher’s first cut at making some explicit theoretical
statements’ (Miles & Huberman, 1994, p. 91). In the
context of our study, the use of SCOT as an orienting
framework helped us make sense of occurrences and
ensured that important issues were not overlooked. We
return to this in the last section.

We have used SCOT to understand the ways in which
IS requirements are socially constructed and why IS
developers too often choose to ignore, and thus
effectively black-box, the complexities of gathering
requirements in order to simplify both the difficulties
of their work and their relations with customers. In so
doing we have approached RE practice as a contingent
process. In such a view, technological change is seen
as being best explained by reference to a number of
technological controversies, disagreements, and difficul-
ties that involve different actors. Overall, our approach
relates to the principle of interpretive research (Klein &
Myers, 1999), about abstractions and generalizations
of data through the use of theories. We structured
the data collection and analysis following the key tenets
in SCOT as applied to RE practices: identifying key
encounters related to the RE process, what actors were
involved and what were their interests? What negotia-
tions took place? What were the effects of these
negotiations? What role did requirements play in these
negotiations?

However, while early identification of possible con-
structs allows them to be explicitly used in the interview
context (Eisenhardt, 1989), it is equally important to
recognize that the identification of constructs is tentative
in theory-building research. We found this to be true as
new factors were found during data collection that
needed to be added to the analysis. An important issue
to resolve for reaching closure is when to stop conducting
interviews. Ideally, researchers should stop adding cases
when theoretical saturation is reached (Eisenhardt,
1989). Theoretical saturation is the point at which
incremental learning becomes minimal because the
researchers are observing phenomena seen before (Glaser
& Strauss, 1967). In practice, we decided to stop
conducting interviews when new interviews did not
add to what we already knew.

In addition to the interviews, we collected more than
200 documents relevant to the present study, including
organizational charts, annual reports, special reports,
and/or administrative documents (including documents
relating to requirements). These documents serve to
situate both the interviewees and their responses.

Requirements engineering blinders Jonny Holmström and Steven Sawyer 39

European Journal of Information Systems

Analysis To do the analysis, the interviews were sepa-
rated question by question and categorized in order
to break them down into smaller segments (Miles &
Huberman, 1994). As part of this process, we also drew on
the collected documents. We built on and theorized
around the concepts we drew from the literature review.
The basic principle of SCOT used to frame the analysis is
the interpretive flexibility of a potential requirement. This
interpretive flexibility is at the root of how technological
choices are socially negotiated. Thus, we sought evidence
of interpretation and negotiation among members of
the two relevant social groups: participating actors who
are members of commissioning organizations and IS
developers.

Interpretation and negotiation lead to conflicts among
relevant social groups and these conflicts in turn are
illustrative of choice points. These conflicts are resolved
and the choices are resolved through the process of
stabilization and closure (when consensus has been
reached). Closure can be achieved in many ways. Some
of the most common are rhetorical (where the issue is
finessed through negotiation) and redefinition (in which
the focus is shifted from the conflict problem to an aspect
for which there is agreement). However, the focus of
this paper is not on the processes whereby closure is
achieved, but on the presence of negotiation around
requirements. In this respect, SCOT is used here to frame
the identification of conflicts/choice points among the
two relevant social groups.

To do this, we followed the recommended procedures
for qualitative research and grounded theory (Eisenhardt,
1989; Strauss & Corbin, 1990; Miles & Huberman, 1994).
Specifically, we adopted the ‘Straussian’ approach toward
grounded theory, which explicitly permits researchers’
exposure to related literature to guide the data analysis
process (Strauss & Corbin, 1994). We followed an iterative
coding process that involved identifying the emerging
concepts, examining empirical evidence for support,
consolidating similar concepts to create more refined
ideas, and collecting more data until theoretical satura-
tion was reached.

Data analysis was based on the three types of coding
suggested by Strauss & Corbin (1990): open, axial, and
selective. The data analysis process was facilitated by
using Atlas.ti software, which was designed for managing
complex data and supporting qualitative analysis. We
first identified 55 codes, each supported by two or more
text segments, during the open coding stage. During
this stage, we drew on SCOT for guidance, and focused on
identifying the nature of interactions among the two
relevant social groups.

During the axial coding stage we consolidated codes
that were conceptually similar. Finally, during the
selective coding we strove to integrate the identified
codes and formulate a storyline that offered a coherent
and insightful account of the RE practices. This third
stage was again guided in large part by SCOT concepts as
we were looking for evidence of social constructions and

the social definitions of meanings for what was to be a
requirement for the IS. We provide an example of our
selective coding effort in the Appendix.

Following an initial coding effort, additional data
collection and coding efforts were made until theoretical
saturation was reached. To verify the plausibility of
identified concepts, we further reviewed the data set for
corroboratory evidence and used data from different
sources and methods for results triangulation to ensure
the validity of our findings (Miles & Huberman, 1994).
The results provide insights explaining the processes
associated with RE practices, in particular with how
RE – the gathering and representation of stakeholder’s
needs for an IS – is enacted.

Findings
We report four findings from our study of how IS
developers enact RE and conceive its value. We find that
RE reflects: (1) the changing needs of the organization,
(2) the way in which structured IS methods are enacted
via experience and social competency, (3) the formation
of project groups, and (4) the resolution of conflicts and
negotiations.

The changing needs of the organization Respondents
note that participants in contemporary IS development
projects generally presume that development will lead to
a complete and finished IS. They further note that the
need for adjustment is driven by an implicit conceptua-
lization of organizational work as static: the IS is designed
to match what was specified, not support what is now
needed. For example, developer ‘D’ notes:

It worked for a while [after the system went into operation]

but then after a while they change your activities, of course,

‘we will do this too’. We then have to go in and adjust the

system. [y]. We are always doing this [changes]. Always

and never-ending. (D)

This is not a revelatory finding, just further evidence that
professionals in practice seem to adopt an (empirically
and conceptually) unsupportable worldview of require-
ments (and the organizations that develop them) as
temporally immutable. Some developers assign their
static worldview of an IS to those using the IS:

I believe that they [the customers] think that the system will

cost a certain amount and will look like this and this. And

on this date we say goodbye to the consultants and,

hopefully, will never see them again. (A)

Other developers note that users do not have a fixed-
point view of requirements or of the organization:

I believe that today most are aware that you have to budget

20–25% of the development’s costs for the maintenance of

the system. (G)

Developers further noted that requirements are constantly
being added or changed during the IS development.

Requirements engineering blinders Jonny Holmström and Steven Sawyer40

European Journal of Information Systems

Respondents viewed changing requirements as common-
place, obvious, but problematic:

Today the goals and demands are over there (points in one

direction). Later, when we have finished the project, they

are over there (points in another direction). So you have to

constantly keep your eye on the moving goal. (R)

Developers note there are many reasons why require-
ments change. It may be that the developers did not
properly understand their customer’s work or working
environment. It may be that the IS customer believed
that certain things would be included, but did not clearly
express these demands from the beginning. It may be
that requirements were not properly prioritized, or,
worse, that they were forgotten:

He [a customer] was the type that said, ‘Yes, but you should

have known that’. He assumed that we knew things which

we could not have known and then you could have done

something that he had asked for and sent it to him. Then he

said ‘Yes, but this is wrong, of course. This should also be

included.’ ‘Yes, but we did not know that.’ ‘Yes, but you

should have known.’ Then it became a whole lot of back

and forth and redoing and adding to. (P)

Developers called attention to the importance of custo-
mers being good at prioritizing their needs:

It is assumed that those who create the system are those

who need to know what is needed from it, but it is

important that the customer also knows what they want.

Then they understand that they must present as much

information as possible which could have an effect on the

system. This is partly our task, and partly the task of the

customer. (T)

The focus on establishing requirements seems to provide
little help for either developers or the developer’s stake-
holders to grapple with the well-known problems of
dealing with changing requirements.

Structured IS methods are enacted via experience and social
competency Respondents reported that they used some
form of the prescribed structured method to gather
requirements. While the particulars of the structured
method vary from firm to firm, each method has a phase
or activity specifically focused on requirements gather-
ing, and the respondents were aware of these methods.
Respondents further noted that they do not follow
these methods as rules, but more as guides. That is,
methods are not followed, they are enacted (as other
authors have shown, e.g., Mathiassen & Stage, 1992;
Stolterman, 1992). Method enactment is an area of active
scholarly inquiry (e.g., Rowlands, 2008). We note here
only that our work is both supportive of that research
and that our findings reflect the premises of incomplete-
ness and resulting social negotiation on which method
enactment literature rests.

Beyond the rules imbued in structured methods,
developers noted that experience, working knowledge

of the field, and social competency were all deployed in
enactment of the methods:

You never walk a straight line throughout an entire project,

there are tons of potholes. Methods can, of course, help you

avoid falling into these holes. [y] The other competencies

are used when the unforeseen happens. (M)

Through working and spending time with personnel,
and by examining the routines of the company, the
IS developer can increase his/her understanding
about how different demands affect the system and
the commissioning organization. Looking at problems
through the viewpoint of the different personnel can
also help the developer to create his/her own view of
the system.

Forming project groups Respondents noted that com-
mon practice was to work in project groups during IS
development. They further noted that IS development
group members had little involvement in deciding who
would be included in the group. This responsibility lay,
instead, with the commissioning organization. The
reason that certain people were chosen over others,
according to respondents, was their interest in IT or
commitment to change. Respondents espoused the belief
that customers choose project members who show
positive attitudes and ability to work well with others,
since no one wishes to begin a project with problems.
That is, enthusiasm was seen as a more important
criterion than technical competence, organizational
relevance/insight, or domain knowledge:

I wonder if it was the Managing Director who had ideas

because the ones that were on the project were those who

were the most open to change. Of the factory managers,

those who were chosen were those most concerned with

change. On the sales side of things, they chose a salesperson

whoy wanted change. (A)

Respondents also noted that when project members were
chosen by the customers, relevant actors were not always
included. For example, sometimes members representing
only one or a few departments may be chosen, and other
departments’ needs are often not known, forgotten or
given lower priority. Problems may also arise when those
who are less interested in the process are not allowed to
express views regarding requirements of the system to be
developed:

There is also the problem that the users who are most

interested in the project are chosen by the customer to be

included in something like this. ‘Yes, now we need to set

aside 10 non-users to talk with the system developers.’ Yes,

but who do we choose, then? Yeah, those who are

interested, which is actually kind of wrong because those

who are not interested don’t get to be heard. This can cause

internal conflicts. (D)

Respondents noted that too often the commissioning
organization does not take responsibility to assign the
resources needed and the ‘right’ people for the project

Requirements engineering blinders Jonny Holmström and Steven Sawyer 41

European Journal of Information Systems

group. This seems to shift the responsibility for over-
coming (or recovering from) problems related to inade-
quate team selection onto the members of the team.

Conflicts and negotiations All respondents reported that
it was helpful for conflicts to arise during development
projects and that this was much better than having
conflicts surface after the projects had ended. Conflict,
while not always pleasant, was seen as the best means to
provide all actors the opportunity to learn and consider
multiple sides of an issue:

When you get into a conflict, if you can call it a conflict –

you have to examine your own reflections about the

problem instead of continuing along on your own line of

thought; which is probably easiest and most obvious

to yourself. That is when you begin to wrestle with the

problem, twist and change your argument. Sometimes it is

then that you trip yourself up and then you have to discuss

issues more, and then you realize that things are going to

hell. (J)

In these periods of conflict, developers note there is
difference between how leaders and project workers
engage. However respondents, for the most part, consider
customers to be a relatively homogenous group:

You have, actually, two different types of priorities. Partly,

you have the customers’ priorities, what is most important

and what is less important. But then you also have our

internal priorities y how difficult different things are to do

and what is dependent on what. (R)

Paradoxically, developers observe that conflicts often
reflect ongoing issues within the commissioning organi-
zation that are revealed during requirements disputes:

I believe that some of the worst fights are internal, when we are

not with them. I believe that things can get pretty hot then. (A)

They [the conflicts within the commissioning organization]

I believe are not really taken up in front of us, more

internally. If we have a board meeting, they take up

problems that they have with us and we take up problems

that we have with them. (P)

Most developers believe that it is the customer’s respon-
sibility to solve internal problems and disagreements. It is
not the job of the IS developer to convince opponents or
to attempt to persuade parties within the organization to
compromise:

We will be good at telling them how to do things, but it is

the customer who must say what and why. It is there that I

believe we have to shut our mouths and open our ears. (A)

Others argue that they should participate in resolving
conflicts, in case it is otherwise impossible to continue
before resolving them, even if it is not the main task
at hand. Regardless of their position on resolving intra-
customer conflict, respondents emphasized that discus-
sion among the interested parties is the most important
factor for creating a mutual understanding. For exam-
ple, it is important to thoroughly discuss requirement

specifications in order to avoid different actors interpret-
ing the specifications in different ways:

You have to sit down and discuss [y] you have to have

meetings often and make sure you are in agreement often,

because if you work too long on the wrong concept, you are

just throwing money into the sea. (P)

Developers also observe that compromise is critical. One
respondent went on to note:

It becomes cheapest and easiest [to first try to compromise

between the two departments’ different demands]. Some-

times you can get a bit irritated. Things that you believe

are the basis, but this goes both ways and no one agrees. At

that point, I usually develop a compromise. Then I throw it

out there – then they grumble a bit, but you pretend not to

hear it. Sometimes they agree. Otherwise you just do it. (I)

One respondent noted that there is a certain limit to how
much you can discuss:

Sometimes you get permission to be a little heavy-handed.

We cannot continue to swing back and forth indefinitely.

We have to begin from those demands which are specified

during the time when you specify demands. At some point

you have to say that you are now finished. We cannot

change anything now [y] If it becomes too much, stop and

discuss with the people and maybe things get delayed. It is a

balance thing. (G)

While all respondents reported that it was useful for
conflict to arise during development projects, since it
provides all actors the opportunity to learn, it is not
necessary to find compromises for all conflicts. In fact, a
few respondents stated that avoiding conflict can be
important, in terms of minimizing delays and reducing
the cognitive load that the developers face in turning
requirements into a working IS. One developer even went
so far as to state that the optimal situation is when you do
not even have to ask the customer anything at all.

Discussion
Here we build on the findings from the previous section
to discuss two outcomes from this work. We look first at
organizational and team-level influences which serve to
frame the work worlds of IS developers relative to
enacting requirements gathering. Then, we examine the
set of simplifying assumptions about the stakeholder’s
work that IS developers use as a means to support a
working fiction of homogeneous work environments.

Organizational and team-level influence on
developer’s work
The developers are aware that an IS development project
does not always lead to a finished system, even if the
project’s resources and scope are finite. The developers we
interviewed understand that IS development must be
both envisaged and undertaken as an ongoing and
indeterminate activity, one that accounts for the chan-
ging nature of both the organization and its environ-
ment, even though the project-based structure imposes

Requirements engineering blinders Jonny Holmström and Steven Sawyer42

European Journal of Information Systems

an artificial completion. This supports arguments
advanced by Howcroft & Light (2010) regarding the
socially constructed nature of software. Moreover, our
respondents made clear that during any IS project
development, demands are added and existing needs
are often changed, supporting the work of Chabraborty
et al. (2010).

Respondents believed that additions and changes to
requirements show that, to a large extent, the participat-
ing actors are either unsure about their needs or do not
clearly express what they require from the IS being
developed. Thus, representing and accounting for change
is expected, but the ambiguity and incompleteness of
requirements are problems that arise from the participat-
ing actors (users) rather than the developers. This agency
displacement – attributing ambiguity and change not to
the IS developers’ actions but to the participating actors –
reinforces the findings regarding the differential locus of
power between users and developers that Kling & Iacono
(1984a) identified.

One factor that contributes to this agency displace-
ment is the respondent’s reliance on following structured
design methods; a deontological approach, as noted by
Wood-Harper et al. (1996). Respondents used a range of IS
development methods to manage demands, so it appears
that this use of methods as an instrument of disassocia-
tion is not tied to a particular method, but to their uses.

Respondents clearly indicated that domain experience
and knowledge about a customer organization’s activities
are important for IS developers since such experience and
knowledge provide a means to frame and often to
prioritize discussions with users. Building on this, we
note that developers see discussion as the best way to
create a mutual understanding with their participating
actors and to learn more about possible system alter-
natives. We know from the literature that problems
associated with requirement specifications often occur
when different participating actors either do not under-
stand or choose to interpret things to their own
advantage (Guinan, 1988; Bergmann et al., 2002b). It
appears that meeting, discussing, and negotiating are
seen by IS developers as highly valuable (if not essential).
Respondents also note the importance of a system
developer being socially competent, since social compe-
tency is the main mechanism used to successfully
interact with the many different types of people in a
customer organization.

These findings reinforce the notion that social compe-
tency, often gained from experience, and showcased
through ongoing discussions with clients (participating
actors), are important parts of the sense-making process
on which RE relies. This suggests to us that IS developers
use sense-making skills in order to adapt methods to
specific situations. By sense-making we mean here the
process of taking in complex equivocal information from
the environment, attempting to extract meaning from it,
and applying what was learned in the future (Weick,
1993).

The importance of sense-making is not reflected in
many of the IS (or RE) methods used by the developers
in this study. It appears that IS developers are conscious
of client organizations’ demands for constant change.
However, while a majority of the respondents see con-
flicts as having advantages as stimulators of reflection
and consideration, this does not mean that they like or
seek conflict among users or between participating actors
and developers. They note only that when it occurs,
conflict can be productive.

The wish for a homogeneous environment
Respondents regard differences in interpretation of
participating actors’ needs and concerns as arising
collectively from the customers. This leads to developers
seeing differences as occurring mainly between them-
selves and these participating actors – homogenizing
both the differences among IS developers and tremen-
dously simplifying the variety of organizational per-
spectives which they encounter. Both are problematic.
However, the desire among IS developers to perceive the
staff of a client organization as a homogeneous group,
all of whom are striving to meet the same objectives,
is puzzling (and may be deeply unhelpful) because it
directly conflicts with their experience when working
with participating actors. It may be that this is, unwit-
tingly, abetted by other actions. For example, and as
noted earlier and discussed below, typically only a small
group of potential users in the customer organization are
engaged in RE, which is likely to reduce the range of
perspectives on use and need.

However, regarding the staff of customer organizations
as a homogeneous group simplifies the approach to RE
(essentially by ignoring the complexity and messiness of
needs of some users during a negotiation process).
Essentially, IS developers use RE as a means to downplay
the importance – and messy details – of negotiating.
However, it is unlikely that an IS developer will effectively
manage demands based on a negotiation perspective if he
or she is not able to understand the range of wishes co-
existing within the commissioning organization. Even if
the IS developers agree that there are different opinions,
it seems that the wish to simplify prevails over the reality
of complexity.

This contradictory simplification seems to be further
magnified by the process of choosing participating actors.
Findings show that people chosen to engage in RE work
by the commissioning organization are often selected by
management or are those who take initiative for the
system. The chosen project members are often people
naturally disposed to a pattern of change, often share
similar opinions about the aims of the project, and may
even be self-selecting. In other words, these main actors
may be somewhat more homogeneous and perhaps
not representative of the commissioning organization’s
broader and possibly more divergent views.

Creating a more diverse group of participating actors
can be difficult since those who choose the members

Requirements engineering blinders Jonny Holmström and Steven Sawyer 43

European Journal of Information Systems

naturally do so in an attempt to shape the outcome of
the system. It can be seen as less inviting to include
members of the customer organization who, from the
outset, have different opinions about how the system
should work. There may also be perceptions that the
project will run less smoothly and be less easy to control
if the participating actors do not agree about most aims
from the beginning.

If the participating actors who form the customer
organization’s project group is both homogenous and
aligned in terms of power perspectives (such as reflecting
a managerial, and not primary user, orientation to the
IS being designed), alternative opinions are not likely to
be raised in the negotiation process. The desire to reduce
the heterogeneous nature of the organization and its
member’s needs, as we have observed from our respon-
dents, reduces the prerequisite conditions for engaging
in negotiations to resolve conflicts among those with
differing views of the IS and to capture the evolving
patterns (and idiosyncrasies) imbued in the organization.

Theorizing RE as a social construction
Our data show that there is a certain awareness among IS
developers that different opinions about the nature and
needs of new IS/requirements exist within commission-
ing organizations. However, a desire to simplify this
complexity and (seemingly) disregard these complica-
tions too often prevails among the developers. There are
at least two reasons for this. First, the selection of
participating actors is too often focused on minimizing
heterogeneity – albeit for very understandable reasons.
Second, the requirement gathering and representation
methods are more focused on establishing a set of
actionable needs than on identifying the full range of
needs – again, for very understandable reasons.

In focusing on these organizationally desired goals, the
IS developers do not attend to the full diversity of needs
or accommodate the certainty of changes over time. Both
points illustrate not only the developer’s desires to
simplify the complexities of RE practices, but also that
requirements are not things that exist or are clearly
articulated in a form that can be readily gathered in an
organization. Rather, requirements are generated through
processes of negotiation and conflict resolution among
the actors involved in the project.

The conceptual basis of SCOT provides us with an
analytical lens that is sensitive to these complexities,
explaining technological change by reference to pro-
cesses of interpretation, negotiation, and closure by
different actors and social groups. RE practices, from
such a perspective, are thus understood as social
constructions that can only be explained by focusing
on the social processes that have constructed them.
Understanding RE practices as socially constructed
through processes of negotiation will increase the
chances of developing requirements that meet the client
organization’s needs and of IS development projects
delivering useful IS.

This second point is further highlighted by the awareness
of IS developers that changes over time are both likely
and important. Nevertheless, these same developers draw
on methods that do not engage with changes in needs
over time. We further note that IS developers are keenly
aware that their social competency is both the vehicle
used to enact methods and the means by which they
engage participating actors.

These findings clearly show that IS development
methods, particularly requirement development metho-
dology, must move beyond thinking of participating
actors as homogenous groups with similar needs to more
carefully address the social construction of requirements.
To improve IS development, requirements elicitation
activities must create both awareness and an understand-
ing of the possibilities that opposing arguments can be
beneficial (Urquhart, 1999). This is not news, since both
those who advocate participatory design, and those who
advocate the social design (and particularly power)
perspective of IS, have long drawn similar conclusions
(e.g., Markus, 1983; Kling & Iacono, 1984a, b; Ehn, 1993).
These issues are, however, highly relevant in relation to
today’s IS practices. For instance, when looking at the
recent development towards agile methods we can note
how the issues raised in this paper are highly relevant in
relation to recent developments in agile methods. With
agile methods being routinized and infused in the
adopting organizations, one of the most pressing issues
is the need to develop a better understanding of
negotiations, and how to balance negotiation processes
building on the competence bases found in both the
adopting organization and among the developers. This
issue is too often overlooked in today’s agile practices
(Abrahamsson et al., 2009).

The RE community appears to have continued to focus
on the artifact, and thus failed to exploit the potential
value of social constructivist approaches, which are
highlighted by our findings. There seems to be a clear
need for more of a social process perspective, and
awareness of the need for multiple perspectives of IS
requirements. We find that developers see negotiation,
conflict, and reflection as critical means to gather
insights, but they readily take opportunities to simplify
their work by opting for limited and too-often hetero-
geneous views of IS needs. In this manner their actions
illustrate the constructivist view that technological
change is best explained by reference to a number of
technological controversies, disagreements, and difficul-
ties that involve different actor groups. In this case the
developers engage in strategies to shape RE practices
according to their own plans by means of simplification.

We note that the evidence suggests that this simplifica-
tion, this black-boxing of difference into a homogeneous
view, is neither successful RE nor useful as an IS
design approach. We argue that in order to understand
and develop requirements for systems that will be
useful and capable of evolving properly over time, IS
developers must engage more fully with heterogeneous

Requirements engineering blinders Jonny Holmström and Steven Sawyer44

European Journal of Information Systems

environments. This requires developers to engage more
proactively in acquiring diverse perspectives and to see
the gathering and representing requirements as a process
of social learning (e.g., Suchman, 2002; Stewart &
Williams, 2005).

To do this well will require two changes. First, IS
developers need to have better analytical approaches to
help them evaluate and prioritize domain and systems
challenges (e.g., Ackerman, 2000). Second, both devel-
opers and participating actors need to develop social
skills for successfully engaging in negotiation, conflict
management and the other social competencies through
which requirements (and methods to gain them) are
developed. The comforting but myopic focus on the
artifact (a set of requirements) promotes underestimation
of the importance of the dynamics of change and the
need to reflect dynamism and emergence (e.g., Truex
et al., 1999). This demand for increased social skills does
not, however, mean that we are suggesting that it
would be ok to diminish an IS developer’s techno-
logical or analytical skills. Quite the contrary: we are
articulating that an IS developer must have both, and
that there seems to be evidence that the social skills are
not yet emphasized in ways that translate directly to
practice.

It should be noted that a shift towards acknowledging
the socially constructed nature of requirement raises its
own problems. One is that requirements development
is often tied up with internal conflicts among the user
community within the commissioning organization. It
may be that in such cases the IS developers serve more as
focusing agents, raising issues for the commissioning
organization’s potential user community to address.
Project, conflict, and role demands are not easy to
address (and disentangle) in such politically charged
environments, and this is likely to pose great challenges
for project leaders (e.g., Rowlands, 2008). A second is that

greater emphasis must be placed on developing shared
understanding (and if possible some consensus) of the
various perspectives on IS requirements – the specific
goal of social learning approaches (cf. Suchman, 2002;
Stewart & Williams, 2005). Since it is often during these
conflict situations that alternative solutions and new
ideas can arise, IS developers can add valuable informa-
tion when they participate in these conflicts, but may not
be able to sort out what they have learned.

There are limits on how much the different actors can
discuss: eventually certain choices must be made in order
to begin the development of the IS. Also, attempting to
access and understand too many different opinions, and
then resolve the resulting conflicts, can be time-consum-
ing (perhaps incommensurately). One reality is that
neither the commissioning organization nor the IS
development firm have unlimited time or resources. We
see the challenge partly as encouraging negotiation, but
at the same time not letting the negotiations take over.
Clearly, RE is a balancing act, but the balance cannot be
achieved by simply denying the centrality of negotiation
in defining requirements.

More broadly, we have argued through this paper for
the need to shift towards adopting a more complex,
negotiated, approach to developing requirements. It is
our argument that such a shift calls for a rethinking of
current requirement engineering practices to consider
social learning and the social construction of require-
ments. We have highlighted this argument by drawing
on empirical evidence from a study of how IS developers
engage in RE and how they conceive its value. The factors
we found to be important in this process included: the
changing needs of the organization, the ways in which
structured IS methods are enacted via experience and
social competency, the formation of project groups,
and finally engagement in inter-personal conflict and
negotiations.

About the authors

Jonny Holmström is a professor of Informatics at Umeå
University, Sweden. His research interests include IT’s
organizational consequences, digital innovation, and
open innovation methods for university-industry colla-
boration. Holmström’s larger research program has
examined how organizations innovate with IT, and he
is currently investigating how organizations in the
process industry sector can develop sustainable competi-
tive advantages through mindful use of IT, and how
media organizations make use of a heterogeneous
media portfolio. He has published his research in
journals such as Information and Organization, Information
Resources Management Journal, Information Technology and
People, International Journal of Actor-Network Theory and
Technological Innovation, Journal of Information Technology

Management, Journal of the AIS, Journal of Global Informa-
tion Technology Management, and Scandinavian Journal of
Information Systems.

Steve Sawyer is on the faculty of Syracuse University’s
School of Information Studies and a research fellow at the
Center for Technology and Information Policy. Steve does
social informatics research with a particular focus on the
relationships among changing forms of work, organiza-
tion and uses of information and communication
technologies. Sawyer’s research is done through studies
of software developers, real estate agents, police officers,
organizational technologists, and other information-
intensive work settings. His work is published in a range
of venues and supported by funds from the National

Requirements engineering blinders Jonny Holmström and Steven Sawyer 45

European Journal of Information Systems

Science Foundation, IBM, Corning, and a number of
other public and private sponsors. Prior to returning to
Syracuse, Steve was a founding faculty member of the

Pennsylvania State University’s College of Information
Sciences and Technology. Steve earned his Doctorate in
Business Administration from Boston University in 1995.

References
ABRAHAMSSON P, CONBOY K and WANG X (2009) ‘Lots done, more to do’:

the current state of agile systems development research. European
Journal of Information Systems 18, 281–284.

ACKERMAN M (2000) The intellectual challenge of CSCW: the gap
between social requirements and technical feasibility. Human-Computer
Interaction 15(2–3), 181–205.

AVGEROU C and CORNFORD T (1993) A review of the methodologies
movement. In Proceedings of the first European Conference on
Information Systems ECIS 1993 (WHITELY EA, Ed.), Operational Research
Society, Henley-on-Thames, U.K., 29–30 March, pp 278–289.

AVISON D and FITZGERALD G (2003) Where now for development
methodologies? Communications of the ACM 46(1), 79–82.

BERGER PL and LUCKMANN T (1966) The Social Construction of Reality.
Doubleday, New York.

BERGMAN M, KING J and LYYTINEN K (2001) Large scale requirements
analysis as heterogeneous engineering. Scandinavian Journal of
Information Systems 12(1), 37–56.

BERGMAN M, KING J and LYYTINEN K (2002a) Large-scale requirements
analysis revisited: the need for understanding the political ecology of
requirements engineering. Requirements Engineering 7(3), 152–171.

BERGMAN M, KING J and LYYTINEN K (2002b) Large scale requirements
analysis as heterogeneous engineering. In Social Thinking – Software
Practice (FLOYD C and KLISCHEWSKI R, Eds), pp 357–386, MIT Press,
Cambridge, MA.

BIJKER WE (1995) Of Bicycles, Bakelites, and Bulbs: Toward a Theory of
Sociotechnical Change. MIT Press, Cambridge, MA.

BIJKER WE and LAW J (1992) Shaping Technology/Building Society: Studies in
Sociotechnical Change. MIT Press, Cambridge, MA.

BIJKER WE, HUGHES TP and PINCH TJ (1987) The Social Construction
of Technological Systems. New Directions in the Sociology and History of
Technology. MIT Press, Cambridge, MA.

BOEHM B (1981) Software Engineering Economics. Prentice-Hall, New York.
BROOKS F (1987) No silver bullet: essence and accidents of software

engineering. Computer 20, 10–19.
CHABRABORTY S, SARKAR S and SARKAR S (2010) An exploration into the

process of requirements elicitation: a grounded approach. Journal of
the AIS 11(4), 212–249.

EHN P (1988) Work-Oriented Design of Computer Artefacts. Almquist &
Wiksell, Stockholm.

EHN P (1993) Scandinavian design: on participation and skill. In
Participatory design (SCHULER D and NAMIOKA A, Eds), pp 41–77,
Lawrence Erlbaum, Hillsdale, NJ.

EISENHARDT KM (1989) Building theories from case study research.
Academy of Management Review 14(4), 532–550.

GHEZZI C and NUSEIBEH B (1998) Guest editorial – managing inconsistency
in software development. Transactions on Software Engineering 24(11),
906–907.

GLASER B and STRAUSS AL (1967) The Discovery of Grounded Theory:
Strategies for Qualitative Research. Aldine, Chicago.

GOLDEN-BIDDLE K and LOCKE K (1993) Appealing work: an investigation
of how ethnographic texts convince. Organization Science 4(4),
595–616.

GRINT K and WOOLGAR S (1997) The Machine at Work: Technology, Work
and Organization. Polity, Cambridge.

GUINAN PJ (1988) Patterns of Excellence for IS Professionals. An Analysis of
Communication Behavior. ICIT Press, Washington.

HANISCH J and CORBITT B (2007) Impediments to requirements engineer-
ing during global software development. European Journal of Informa-
tion Systems 16, 793–805.

HANSEN S, BERENTE N and LYYTINEN K (2009) Requirements in the 21st
century: current practice and emerging trends. In Design Requirements:
A Ten-Year Perspective (LYYTINEN K, LOUCOPOULOS P, MYLOPOLOUS J and
ROBINSON W, Eds), pp 44–87, Springer, Berlin.

HOLMSTRöM J (2005) Theorizing in IS research: what comes first and what
comes after? Scandinavian Journal of Information Systems 17(1), 167–174.

HOLMSTRöM J, WIBERG M and LUND A (2010) Industrial Informatics Design,
Use and Innovation. IGI Global, Hershey, PA.

HOWCROFT D and LIGHT B (2010) The social shaping of packaged software
selection. Journal of the AIS 11(3), 122–148.

KLEIN HK and MYERS MD (1999) A set of principles for conducting and
evaluating interpretive field studies in information systems. MIS
Quarterly 23(1), 67–93.

KLING R and IACONO S (1984a) Computing as an occasion for social
control. Journal of Social Issues 40(3), 77–96.

KLING R and IACONO S (1984b) The control of information systems
developments after implementation. Communications of the ACM
27(12), 1218–1226.

LAMB R and KLING R. (2003) Reconceptualizing users and social actors in
information systems research. MIS Quarterly 27(2), 197–235.

LOUCOPOULOS P and KARAKOSTAS V (1995) System Requirements Engineer-
ing. McGraw-Hill Book Company Europe, Berkshire, UK.

MADSEN S, KAUTZ K and VIDGEN R (2006) A framework for understanding
how a unique and local IS development method emerges in practice.
European Journal of Information Systems 15, 225–238.

MALCOLM E (2001) Requirements acquisition for rapid applications
development. Information & Management 39, 101–107.

MARKUS M (1983) Power, politics, and mis implementation. Communica-
tions of the ACM 26(6), 430–444.

MASON J (1996) Qualitative Researching. Sage, Thousand Oaks, CA.
MATHIASSEN L and NIELSEN PA (2000) Interaction and transformation in

SSM. Systems Research and Behavioral Science 17, 243–253.
MATHIASSEN L and STAGE J (1992) The principle of limited reduction in

software design. Information Technology & People 6(2–3), 171–185.
MILES MB and HUBERMAN AM (1994) Qualitative Data Analysis: An

Expanded Sourcebook 2nd edn, Sage, Thousand Oaks, CA.
MUMFORD E (2003) Redesigning Human Systems. Idea Group, Hershey, PA.
NUSIBEH B and EASTERBROOK S (2000) Requirements engineering: a

roadmap. In Proceedings of the Conference on the Future of Software
Engineering ICSE, Limerick, Ireland, 4–11 June, pp 35–46, ACM, New
York, NY.

ORLIKOWSKI WJ and BAROUDI JJ (1991) Studying information technology in
organization: research approaches and assumptions. Information
Systems Research 2(1), 1–14.

ORLIKOWSKI WJ and GASH DC (1994) Changing frames: towards an
understanding of information technology and organizational change.
ACM Transactions on Information Systems 2(2), 174–207.

PAUL RJ (1993) Dead paradigms for living systems. In Proceedings of
the First European Conference on Information Systems ECIS 1993
(WHITLEY EA, Ed.), Operational Research Society, pp 250–255,
Henley-on-Thames, UK.

PINCH TJ and BIJKER WE (1984) The social construction of facts and
artefacts: or how the sociology of science and the sociology of
technology might benefit each other. Social Studies of Science 14,
399–441.

ROBEY D (1994) Modeling interpersonal processes during system
development: further thoughts and suggestions. Information Systems
Research 5(4), 439–445.

ROBINSON W and VOLKOV S (1998) Supporting the negotiation life-cycle.
ACM, Communications of the ACM 41(5), 95–102.

ROOKSBY J, SOMMERVILLE I and PIDD M (2006) A hybrid approach to
upstream requirements: IBIS and cognitive mapping. In Rationale
Management in Software Engineering (DUTOIT A, MCCALL R, MISTRIK I and
PAECH B, Eds), pp 137–154, Spring, Berlin.

ROWLANDS B (2008) The enactment of methodology: an institutional
account of systems developers as social actors. Scandinavian Journal of
Information Systems 20(2), 21–50.

Requirements engineering blinders Jonny Holmström and Steven Sawyer46

European Journal of Information Systems

SAWYER S (2001a) Information systems development: a market-oriented
perspective. Communications of the ACM 44(11), 97–102.

SAWYER S (2001b) Effects of conflict on packaged software development
team performance. Information Systems Journal 11(2), 155–178.

SOMMERVILLE I and SAWYER P (1997) Requirements Engineering – A Good
Practice Guide. John Wiley & Sons, England.

STEWART J and WILLIAMS R (2005) The wrong trousers? Beyond the design
fallacy: social learning and the user. In Critical IT (HOWCROFT D, TRAUTH
E and DEGROSS J, Eds), pp 195–221, Handbook, Edward Elgar, London.

STOLTERMAN E (1992) How system designers think about design and
methods. Scandinavian Journal of Information Systems 4, 137–150.

STRAUSS A and CORBIN J (1990) Basics of Qualitative Research: Grounded
Theory Procedures and Techniques. Sage, Newbury Park, CA.

STRAUSS A and CORBIN J (1994) Grounded Theory Methodology: An
Overview. Sage, Thousand Oaks, CA.

SUCHMAN L (2002) Practice-based design of information systems:
notes from the hyperdeveloped world. The Information Society 18(2),
139–144.

THAYER RH and DORFMANM (Eds), (1990) System and Software Requirements
Engineering. IEEE Computer Society Press, Los Alamitos, CA.

TRUEX DP, BASKERVILLE R and KLEIN H (1999) Growing systems in emergent
organizations. Communications of the ACM 42, 117–123.

URQUHART C (1999) Themes in early requirements gathering: the case of
the analyst, the client and the student assistance scheme. Information
Technology & People 12(1), 44–70.

VAUGHAN D (1992) Theory elaboration: the heuristics of case analysis. In
What is a Case? Exploring the Foundations of Social Inquiry (RAGIN CC
and BECKER HS, Eds), pp 173–202, Cambridge University Press,
Cambridge, MA.

WALSHAM G (1993) Interpreting Information Systems in Organizations.
Wiley, Chichester.

WASTELLS DG (1996) The fetish of technique: methodology as a social
defence. Information Systems Journal 6(1), 25–40.

WEICK KE (1993) The collapse of sensemaking in organizations: the Mann
Gulch disaster. Administrative Science Quarterly 38, 628–652.

WEICK KE (1995) What theory is not: theorizing is. Administrative Science
Quarterly 40, 385–390.

WOOD-HARPER T, CORDER SV and WATSON H (1996) How we profess:
the ethical systems analyst. Communications of the ACM 39(3),
69–77.

WOOLGAR S (1991) The turn to technology in social studies of science.
Science, Technology & Human Values 16(1), 20–50.

ZAPPAVIGNA M and PATRICK J (2010) Eliciting tacit knowledge
about requirements analysis with grammar-targeted interview
method (GIM). European Journal of Information Systems 19(1),
49–59.

ZAVE P (1995) Classification of research efforts in requirements
engineering. In Proceedings of the Second IEEE International Symposium
on Requirements Engineering 27–29 March, IEEE Computer Society
Press, CA.

Appendix

Coding example
Here we provide an example of our coding effort. As
background, we proceeded on a three-step coding effort.
First, Open coding was done by focusing on identifying
codes supported by two or more text segments, leaving us
with 55 initial codes. During this initial stage, we drew on
SCOT for guidance, and focused on identifying the
nature of interactions among the two relevant social
groups (developers and customer/users). Second, during
the axial coding stage we consolidated codes that were
conceptually similar, reducing to 19 from 55. Third,
during the selective coding we strove to integrate the
axial codes in ways that connected to SCOT principles
and formulate a storyline that offered a coherent and
insightful account of the RE practices.

For example, drawing from the material we used in
section ‘Conflicts and negotiations’, here is how we
proceeded.

Step 1: axial coding These two text fragments speak to
internal-to-the-commissioning organization conflicts
among project personnel, what we called ‘host conflict’
as an initial code. We were looking for evidence of
conflict and negotiation because of the prior literature
on this and because this sort of behavior is core to SCOT.
The letters in parentheses are codes that allow us to

distinguish among respondents while preserving their
anonymity.

I believe that some of the worst fights are internal, when we

are not with them. I believe that things can get pretty hot

then. (A)

They [the conflicts within the commissioning organization]

I believe are not really taken up in front of us, more

internally. If we have a board meeting, they take up

problems that they have with us and we take up problems

that we have with them. (P)

Step 2: open coding We identified other text fragments
that highlighted conflicts among customers and devel-
opers (‘social group conflict’), among the developers
(‘role difference’), and about particular issues (‘issue
conflict’). These seemed to be distinct forms of conflict,
but for open coding we linked them to the shared
concept: conflict.

Step 3: selective coding We used SCOT principles to
guide our selective coding. SCOT’s principle of conflict
and negotiation seems to be reflected in our coding of
‘host conflict/conflict’. So we link these and represent this
in our analysis.

Requirements engineering blinders Jonny Holmström and Steven Sawyer 47

European Journal of Information Systems

	Requirements engineering blinders: exploring information systems developers’ black-boxing of the emergent character of requirements
	Requirements engineering and information systems development
	RE and IS development
	RE and requirements management
	Requirements in and from a heterogeneous environment
	Negotiations and conflict resolution

	Social construction of technology
	Research effort
	Research approach
	Data collection and analysis
	Data selection and collection
	Analysis

	Findings
	The changing needs of the organization
	Structured IS methods are enacted via experience and social competency
	Forming project groups
	Conflicts and negotiations

	Discussion
	Organizational and team-level influence on developer's work
	The wish for a homogeneous environment
	Theorizing RE as a social construction

	References
	Appendix
	Coding example

